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Chapter 5

MODIFIED CRAM’S THEORY AND ITS DEPENDENCE ON VARIOUS

PARAMETERS

5.1  Modified Cram’s theory

Lawrence Cram (1976) formulated the theory for the formation of the K-corona.

The modified Cram’s theory includes the influence of the solar wind velocity in the

formation of the K-corona, which is a continuous spectrum. The reasons for the

formation of this continuous spectrum and the influence of the solar wind velocity are

discussed in chapter-2. Figure (5.1) is a schematic diagram showing the mathematical

description of the scattering phenomenon where the photospheric radiation from the sun

is scattered by the free electrons lying along the line of sight of an observer. This

scattering phenomenon is popularly known as Thomson scattering while the scattered

radiation contributes to the formation of the K-corona. A detailed treatment of the

scattered intensity, which includes the influence of the solar wind velocity, is provided in

Appendix-A. Equation (5.1) gives the intensity of the radiation scattered at an observed

wavelength ( λλλλ ) by the free electron density distribution along the line of sight at height

(ρρρρ ) above the solar limb.
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Figure (5.1). This is a schematic diagram showing the
mathematical description of the scattering phenomenon where
the photospheric radiation from the sun is scattered by the free
electrons lying along the line of sight of an observer. The line of
sight is at a distance (ρρρρ ) from the center of the sun.
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The distances r, ρρρρ  and x are expressed in solar radii as follows.

The physical parameters that are inherent in equation (5.1) are given in equation (5.4).

The detailed derivation of equation (5.1) (=Appendix-A.98) is shown in

Appendix-A. The computer code written in IDL to solve equation (5.1) is given in

Appendix-B. From the physical parameters that are inherent in equation (5.1), as shown

in equation (5.4), it is evident that the shape of the theoretical K-coronal intensity

spectrum is dependent upon the models used for the coronal temperature, the solar wind

velocity and the electron density distribution structures. In addition the numerical

outcome of equation (5.1) can also be affected by the numerical methods employed in

solving the various integrals. However the extraterrestrial solar irradiance spectrum and

the limb darkening coefficients could be considered as well-established quantities. As

such, it is prudent to analyze the dependence of the shape of the theoretical K-coronal

intensity spectrum on the coronal temperature, the solar wind velocity and the electron

density distribution structures and the numerical methods used in solving the integrals.

(((( ))))
(((( ))))

(((( )))) model  windsolar  rRW
model etemperatur coronal)T(rR

model  density  electronrReN
irradiancesolar    strialextraterref

t coefficien   darkening  limb)(1u

solar

solar

solar

====
====
====

====λλλλ ′′′′

====λλλλ ′′′′

solar

solar

solar

xRx
R

rRr

→→→→
ρρρρ→→→→ρρρρ

→→→→
(5.3)

(5.4)



140

5.2 Dependence on the electron density distribution function

The bright corona seen during a solar eclipse is due to the scattering of the

photospheric light by the free coronal electrons (F-corona), by dust (F-corona) and the

emission lines (E-corona). The F-corona can be easily eliminated with the use of

polarizes while the E-corona could be identified with the prominent peaks in an otherwise

continuous spectrum. These peaks could be easily removed, as demonstrated in figure

(4.33), to isolate the K-corona. The point that needs to be made here is that the most

straightforward way of measuring the coronal electron density distribution is by

measuring the K-coronal intensity distribution during a solar eclipse that is filtered

through polarizes orientated at three different angles to eliminate the K-corona. This

information can then be used to determine the electron density distribution that would

have yielded the measured intensity distribution due the scattering of the photospheric

spectrum by the free coronal electrons. This method is most suitable for electron density

distribution during the maximum phase of the sun, which allows for the corona to assume

azimuth symmetry.

One of the pioneering efforts in this regard was due to Baumbach (1937).

Baumbach, from an analysis of the photometric material of ten eclipses from 1905 to

1929, deduced the expression given in equation (5.5) for the distribution of brightness in

the solar corona.  This calculation was based upon averaging for all the observations and

for all values of the position angle with the brightness of the center of the solar disk taken

as 106.
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From equation (5.5) it is apparent from the last term that the brightness falls off

most rapidly in the innermost region of the corona while at large distances the brightness

is proportional to the first term, which decreases fairly slowly.  This formula gives only a

smoothed, average value for the distribution of the brightness. On a brighter note

November and Koutchmy (1996) report of a best ever achieved white-light coronal

observations.  This unique opportunity was afforded by the path of total solar eclipse of

11 July 1991 passing above the 3.6 m Canada-France-Hawaii Telescope (CFHT) on

Mauna Kea, Hawaii, which allowed for high spatial resolution white-light coronal

observations with the most modern detectors that was denied to Baumbach (1937). The

sun was at its maximum phase during this eclipse.  Like Baumbach (1937), November

and Koutchmy (1996) use the sum of three power –law terms to best approximate three

regions of the curve, namely, r  < 1.1 SR, 1.1 SR < r  < 1.5 SR, and r  > 1.5 SR (SR =

solar radii), to obtain the brightness distribution given by equation (5.6). Here again I( r )

is in units of 106 of the solar disk center and ( r ) in units of solar radii.

0.170.75.2 r
565.2

r
425.1

r
0532.0)r(I ++++++++==== (5.5)

0.188.75.2 r
670.3

r
939.1

r
0551.0)r(I ++++++++==== (5.6)
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Figure (5.2) shows the comparison between the brightness distributions given by

equation (5.5) and equation (5.6). November and Koutchmy (1996) conclude that the

small difference in the slope to be smaller than the uncertainties in the measurements.

The coronal medium is optically thin. For Thomson scattering in optically thin

plasma, the measured K-coronal intensity is proportional to the integral through the line

of sight of the electron density times a local dilution factor, which is the solar intensity

illuminating the scattering region of the corona. One consequence of this property is that

the average radial intensity variation determines the mean radial variation of the electron

density.  Figure (5.3) shows the electron density distribution derived by Baumbach

(1937) and November and Koutchmy (1996). Here an isotropic scattering function is

assumed. This is not a bad choice for the inner corona since the illumination dilution

Figure (5.2). A plot showing the solar radial log-intensity
variation as a function of solar radii (r) from the center of the
sun. The solid curve represents the measurements by
November and Koutchmy (1996) while the dashed curve
represents the measurements by Baumbach (1937) based on
several eclipses observations.

r  (Solar radii)

Log (Intensity) VS Solar radii
Log (I)
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factor becomes equivalent to the nearly isotropic scattering form because it represents a

superposition of intensity contributions from a wide range of solar disk angles.

The electron number density derived by Baumbach (1937) is given by equation (5.7). A

detailed derivation of equation (5.7) is also shown in Shklovskii (1965).

It is true that the total brightness of the corona changes from one eclipse to another.

Generally speaking the coefficients of equation (5.7) too should change from eclipse to

eclipse. At sunspot maximum, that is when the sun is at its maximum phase, the corona

has approximately a circular form and uniformly bright as shown in figure (5.4). At

sunspot minimum, that is when the sun is at its minimum phase, the corona is elongated

in the equatorial regions and brighter than the polar regions as shown in figure (5.5).

3-
0.160.65.1

8
e cm  )

r
99.2

r
55.1

r
036.0(10)r(N ++++++++××××====

Figure (5.3). A plot showing the log of the electron density variation
as a function of the solar radii (r) from the center of the sun. The
solid curve represents the calculations by November and Koutchmy
(1996) while the dashed curve represents the calculations by
Baumbach (1937) based on several eclipses observations.

 (Solar radii)r

(((( )))) -3
e cm  NLog Log (Electron number density) VS Solar radii

(5.7)
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Figure (5.4). A photograph of the solar
corona during the total solar eclipse of
11 August 1999 where the sun was
approaching the maximum phase.
Here the corona is uniformly bright
and circular in shape.

Figure (5.5). A photograph of the solar
corona during the total solar eclipse of
4 November 1994 where the sun was
approaching the minimum phase. Here
the corona is elongated in the
equatorial regions and brighter than
the polar regions.
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For several reasons as listed below, the electron number density distribution given in

equation (5.7) was selected as input parameter in equation (5.1) for the computation of

the theoretical K-coronal intensity.

(a) This derivation of the electron number density given in equation (5.7) was based

upon ten eclipse observations. Although the observations were performed almost 60-

80 years ago the shape of the density distribution was reconfirmed by November and

Koutchmy (1996) using the most modern telescope for the same purpose. Since the

reconfirmation was in conjunction with the sun in maximum phase in July 1991, this

density distribution could be considered suitable for the total solar eclipse of August

1999, which again coincided with the maximum phase of the sun. The comparison

between the electron number densities determined by Baumbach (1937) and

November and Koutchmy (1996) is shown in figure (5.3).

(b) During the maximum phase of the sun the coronal brightness is approximately

uniform all around the sun, which is not true for the sun at the minimum phase where

the coronal brightness is concentrated in the equatorial regions.  For a sun at the

minimum phase a single density distribution function may not hold for all latitudes.

Most of the other density models are specific regions and in particular hold for the

minimum phase of the sun, which are detailed below. Therefore in conjunction with

the maximum phase of the sun where the coronal brightness is uniform all around the

sun the density model given by equation (5.7) seem to be most appropriate.



146

(c) The method employed in determining the electron density given by equation (5.7)

is an average over so many other coronal features. In determining the theoretical K-

coronal intensity from equation (5.1) it is difficult to integrate over the different

coronal features that may cross the line of sight. For such a calculation to be possible

individual coronal features have to be identified along with their electron density

contrast. In light of the difficulties in such a process it is again most appropriate to

use an electron density model averaged over all such coronal features that may occur

in conjunction with the maximum phase of the sun.

(d) The very definition of the white-light corona is the brightness produced by the

scattering of the photospheric light by the free coronal electrons, which is identified

as the K-corona. Although this may be contaminated by the scattering by dust

particles, which is identified as F-corona, this contamination can easily quantified by

the use of polarizes and eliminated. Also in the region of interest of the experiment

described in this dissertation, which is from the limb to 1.5 solar radii, the

contribution by F-corona is negligible. Therefore it is prudent to use an electron

number density calculation determined by the measurement of the brightness of the

white-light corona, which is the case for the electron number density determined by

Baumbach (1937) and November and Koutchmy (1996).
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The electron density model used Cram (1976), in formulating the properties of the K-

coronal intensity spectrum for the determination of the thermal electron temperature in

the corona, is given in equation (5.8).

Ichimoto et al. (1996) used the same electron density model given in equation (5.8) in

determining the coronal temperatures. Their eclipse observation of February 1994

coincided with the sun at its minimum phase where the coronal brightness is prominently

displayed in an elongated shape in the equatorial regions of the sun.

According to Cram (1976) the model given in equation (5.8) agrees with the Van de

Hulst (1950) minimum equator model within 2% for line of sight between 1.5 and 2.0

solar radii. This model is appropriate for the temperature determination by Ichimoto et al.

(1996) because their observations were confined to regions between 1.5 and 2.0 solar

radii and also their observations on the total solar eclipse of February 1994 coincided

with the minimum phase of the sun.

Another model for the electron number density was due to Newkirk (1961). This

model was based on radio and optical observations. Here the effects of refraction were

considered while neglecting the effects of magnetic fields. The optical depth effects

inherent in any radio observations are discussed in section (1.2). Separate values for the

electron number densities were obtained for the average corona, the polar caps and the

-3)r/04.40.4(
e cm 1067.1)r(N ++++××××==== (5.8)
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active regions.  The approximate formula for the electron number density presented by

Newkirk (1961) is shown in equation (5.9).

-3)r/32.40.4(
e cm 102.4)r(N ++++××××====

Figure (5.6). A series of plots showing the radial dependence
of the mean electron density in coronal holes computed
from various sets of polarization brightness data. This plot
was obtained from Cranmer et al. (1999).

(5.9)
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Various other research groups have computed radial dependence of the mean electron

density specific to coronal holes. These calculations were based on various sets K-

coronal polarization brightness. Figure (5.6) is a plot from Cranmer et al. (1999) showing

the electron number density profiles calculated by various research groups.

In figure (5.6) the heavy solid line is due to Cranmer et al. (1999) using the

UVCS/WLC aboard the SOHO satellite. And the electron number density profile

obtained by Cranmer et al. (1999) is given by equation (5.10). The observed data in this

case is restricted to regions greater than 1.5 solar radii where (r) is in solar radii.

The filled circles in figure (5.6) is due to Strachen et al. (1993) using rocket based

coronograph data. Here they considered the corona to be unstructured and spherically

symmetric. However this assumption is reasonable for considerations restricted to the

coronal hole. Here again electron density profile is restricted to the coronal hole region at

heights above 1.5 solar radii. The electron number density profile obtained by Strachen et

al. (1993) is given by equation (5.11) where (r) is in solar radii.

-3-2.575.108
e cm  )r0.00869r890.3(10)r(N ××××++++××××××××==== −−−− (5.10)

-3-2.4071.68
e cm  )r0.0193r152.0(10)r(N ××××++++××××××××==== −−−− (5.11)
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Using data obtained by Spartan 201-01, Guhathakurta and Holzer (1994) have

presented an electron density profile for the polar coronal hole region specific to the

minimum phase of the solar cycle. This again is valid for heights above 2.0 solar radii

from the center of the sun.  The electron density model by Guhathakurta and Holzer

(1994) is given by equation (5.12) where (r) is in solar radii.

The electron density measurements by Fisher and Guhathakurta (1995) were based on

the use of both the Mk-III K-coronameter from Mauna Loa and White Light Coronagraph

of the space-borne Spartan 201. This study coincided with the maximum phase of the sun

in 1990. However the observations were restricted to the northern and southern coronal

holes. Their measurements extended from 1.16 solar radii to 5.5 solar radii. The

uncertainties reported for the electron density measurements at 1.16 - 1.3 and 1.4 – 1.8

solar radii are ~15% and (30 % - 35 %), respectively.  This latter region coincided with

data set where Mk-III and Spartan 201 data were cross calibrated. Figure (5.7) is a plot of

the electron density measurements by Fisher and Guhathakurta (1995).

-3-2.8-8.4587.168
e cm  )r0.014r0.80r81.0(10)r(N ××××++++××××++++××××××××==== −−−− (5.12)
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Figure (5.8) is a comparison of the electron number density functions based on the

models by Baumbach (1937, equation (5.7)), Ichimoto et al. (1996, equation (5.8)),

Newkirk (1961, equation (5.9)), Cranmer et al. (1999, equation (5.10)) and Guhathakurta

and Holzer (1994, equation (5.12)). Figure (5.9) is a comparison of the shapes of the K-

coronal intensity spectra based on the Baumbach (1937, equation (5.7)), Ichimoto et al.

(1996, equation (5.8)), Newkirk (1961, equation (5.9)), Cranmer et al. (1999, equation

(5.10)) and Guhathakurta and Holzer (1994, equation (5.12)) models for the electron

number density. These plots are normalized to intensity at 4000.0 angstrom and modeled

Figure (5.7). A plot showing the electron
densities for the north (solid line) and south
polar coronal holes (dashed line) and the north
(dotted line) and south (dot-dashed line) polar
coronal rays as a function of height. Reproduced
from Fisher and Guhathakurta (1995).
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for line of sight at 2.0 solar radii above the center of the sun. This plot is simply for the

comparison of the shapes of the theoretical K-coronal intensity spectra based on different

electron density models. The theory by Cram (1976) for the determination of the thermal

electron temperature of the solar corona is based upon the shape of the K-coronal

intensity spectrum and not its absolute values. It is evident from figure (5.9) that no

discernible differences could be seen in the shapes of the theoretical K-coronal spectra

for five different electron density models.

Figure (5.8). A comparison of the electron number density
functions based on the models by Baumbach (1937, equation
(5.7)), Ichimoto et al. (1996, equation (5.8)), Newkirk (1961,
equation (5.9)), Cranmer et al. (1999, equation (5.10)) and
Guhathakurta and Holzer (1994, equation (5.12)).
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Figure (5.10) is another plot the theoretical K-coronal intensity based on different

density models for the line of sight at 1.1 solar radii. Here again no discerning differences

could be observed in the shapes of the K-coronal intensity distribution based on the

different electron density models. However the absolute values would differ for the

different electron density models although it is irrelevant to this experiment.

Figure (5.9). Plots of the theoretical K-coronal intensity spectra
based on the electron number density functions given by
Baumbach (1937, equation (5.7)), Ichimoto et al. (1996, equation
(5.8)), Newkirk (1961, equation (5.9)), Cranmer et al. (1999,
equation (5.10)) and Guhathakurta and Holzer (1994, equation
(5.12)) and the line of sight at 2.0 solar radii from the center of
the sun. The curves have been normalized at 4000.0 angstrom.



154

In summary the electron density measurements given by equations (5.8) to (5.12) are

specific to minimum phase of the sun, or specific to the coronal holes or specific to

heights above the region of interest of MACS. The region of interest of MACS extends

from 1.1 solar radii to 1.5 solar radii and the experiment coincided with the maximum

phase of the sun. In this regard it was decided to select the electron number density given

by Baumbach (1937), as given by equation (5.7), as input parameter for the theoretical

calculation of the K-coronal intensity spectrum.  Here the calculations were based on ten

Figure (5.10). Plots of the theoretical K-coronal intensity spectra
based on the electron number density functions given by
Baumbach (1937, equation (5.7)), Ichimoto et al. (1996, equation
(5.8)), Newkirk (1961, equation (5.9)), Cranmer et al. (1999,
equation (5.10)) and Guhathakurta and Holzer (1994, equation
(5.12)) and the line of sight at 1.1 solar radii from the center of
the sun. The curves have been normalized at 4000.0 angstrom.
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eclipse observations, which avoids the scattering inherent with coronagraphs, and the

region of interest extended from 1.0 solar radius to ~3.0 solar radii. Although these

measurements were conducted about 60 – 80 years ago, this distribution function was

reconfirmed by November and Koutchmy (1996). They had a unique opportunity of

performing the same experiment using the most modern 3.6-m CFHT telescope in Hawaii

in conjunction with the total solar eclipse of July 1991, where the sun was at its

maximum phase.

5.3 Dependence on the temperature profile

Here what need to be investigated are the differences in the theoretical K-coronal

intensity profiles based on the assumption of an isothermal corona and temperature

profiles with a radial dependence.  Usually the radial dependence of the coronal

temperature profiles is based on other experimental results. Since the purpose of this

dissertation is to determine the temperature and the wind profiles at several coronal

heights and latitudes, it will not be helpful in substituting radial temperature profiles

determined experimentally. However an important theoretical consideration for the

temperature profile of the solar corona is due to Chapman (1957). He assumed that above

a certain height in the corona losses by emission to be insignificant compared to

conductive losses and derived the following radial dependence for the temperature profile

as given by equation (5.13) where (r) is in solar radii.

7/2
0 rT)r(T −−−−××××====

(5.13)
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For comparison between an isothermal corona and a temperature profile given by

equation (5.13) assume the line of sight at 1.3 solar radii with the electron number density

profile given by equation (5.7). Also assume that for the case of the temperature profile

given by equation (5.13) that the temperature at the intersection between the line of sight

at 1.3 solar radii and the plane of the solar limb to be 1.0 MK and then to fall off as r-2/7.

For such a case the temperature profile is given by equation (5.14) and its variation along

the line of sight is given by figure (5.11). Here (r) is the distance to points along the line

of sight from the center of the sun. The isothermal corona assumes a temperature of 1.0

MK all along the line of sight.

Figure (5.11). This is a plot of the temperature profile along the
line of sight at 1.3 solar radii based on the assumption of a
conductive corona Chapman (1957). The temperature at the
point of intersection of the line of sight and the plane of the solar
limb is 1.0 MK.
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Figure (5.12) is a plot of the theoretical K-coronal intensity spectra due to an isothermal

corona of temperature 1.0 MK and due to temperature profiles given by

7/2)r/3.1(0.1)r(T ××××====  and 12 ))75.1r(*0.90.1(0.1)r(T −−−−−−−−++++++++==== . The latter is a

hypothetical temperature profile assumed by Cram (1976).  From figure (5.12) no

discernible differences could be seen between the spectra due to an isothermal corona and

the model with a temperature profile given by 7/2)r/3.1(0.1)r(T ××××==== .

Figure (5.12). This is a plot of the modeled K-coronal intensity
spectra for an isothermal corona of 1.0 MK and a model with
the temperature profiles given by 7/2)r/3.1(0.1)r(T ××××====  and

12 ))75.1r(*0.90.1(0.1)r(T −−−−−−−−++++++++==== . Here (r) is the distance
between the center and points along the line of sight 1.3 solar
radii. The temperature at the point of intersection of the line of
sight and the plane of the solar limb is 1.0 MK.
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5.4 Dependence on the wind profile

Here again what need to be investigated are the differences in the theoretical K-

coronal intensity profiles based on the assumption of an isothermal corona and wind

profiles with a radial dependence. Usually the radial dependence of the coronal wind

profiles is based on other experimental results. However one important wind profile

based purely on theoretical consideration is due to Parker (1958). The wind structures

due to isothermal and non-isothermal coronal conditions, driven by sound waves, driven

by dust, driven by lines, driven by the combined effect of the magnetic fields and rotation

and driven by Alfven waves are detailed in Lamers & Cassinelli (1999).

Consider an isothermal wind in which the gas is subject to two forces: the inward

directed gravity and the outward directed gradient of the gas pressure. It has been shown

that the momentum equation has many solutions, depending on the boundary conditions

but only one of them, the critical solution starts subsonic at the lower boundary of the

wind and reaches supersonic velocities at large distances.  The solution to the wind

structure in such a case is given by equation (5.14).
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This phenomenon reveals that a wind is generated as a natural consequence of an

isothermal corona.  In equation (5.14), G, T, µµµµ , R, a and cr  are the universal

gravitational constant, isothermal temperature, mean atomic weight of the particles

expressed in units of the mass of the proton, universal gas constant, isothermal sound

speed and the critical radius, respectively.  For solar composition µµµµ  is 0.602. For an

isothermal temperature of 1.0 MK the isothermal sound speed (a) and the critical radius

( cr ) are 117.5 km/sec and 6.9 solar radii, respectively.  Figure (5.13) shows the profile of

the wind for the above case.

Figure (5.13). Coronal wind profile based on the Parker
model for an isothermal corona. In the ideal solution
the velocity is equal to the isothermal sound speed at
the critical radius and starts with subsonic velocities at
the lower boundary and reaches supersonic velocities at
large distances.
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The Parker wind model shown in figure (5.13) is a natural consequence of an

isothermal corona. Therefore, even if the solar wind is neglected in the determination for

the theoretical K-coronal intensity spectrum for an isothermal corona, it is worthwhile to

investigate the effect on this spectrum by the bulk flow velocity introduced by the Parker

model naturally. In figure (5.14) the comparison is made between a theoretical K-coronal

spectrum for an isothermal corona of 1.0 MK, zero wind velocity and line of sight at 1.5

solar radii with the spectrum due to the bulk flow velocity that naturally arises with the

introduction of the Parker wind model given in equation (5.14).

Figure (5.14). Comparison of the theoretical K-coronal
intensity spectrum for an isothermal corona at 1.0 MK,
zero wind velocity and line of sight at 1.5 solar radii with
the intensity spectrum due to the bulk flow velocity that
naturally arises with the Parker wind model for an
isothermal corona as given in equation (5.14).
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In figure (5.14) no discernible differences could be observed between the two K-

coronal intensity spectra. The reasons for this are twofold. First, from the Parker wind

profile shown in figure (5.13) it is evident that the solar wind velocity at 1.5 solar radii is

very small. Second, although the wind profile shown in figure (5.13) indicates that the

wind values are significant at large distances, nevertheless, this effect is negligible due to

the drop in the electron number density at large distances. Figure (5.15) shows the

theoretical K-coronal intensity spectra due to isothermal coronal temperatures of 1.0 and

1.5 MK with the inclusion of the Parker wind model for an isothermal corona given in

equation (5.14).  As expected the nodes begin to appear mainly due to the temperature

differences.

Figure (5.15). Comparison between two theoretical K-
coronal intensity spectra due to isothermal coronal
temperatures of 1.0 and 1.5 MK and with the inclusion of
the Parker wind model for an isothermal corona.
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5.5 Dependence on the numerical method

The theoretical model for the K-corona, as shown in equation (5.1), consists of

four coupled integrations. In the absence of an analytical solution this equation could be

solved only through a four-dimensional numerical quadrature.  While acknowledging the

existence of multitude of numerical methods, the numerical methods used in solving

equation (5.1) were based on procedures presented in the Handbook of Mathematical

Functions (Ed. M. Abromowitz and L.A. Stegun). Two of the integrals were calculated

using the Trapezoidal Composite Rule while the other two were solved using a Gaussian

Quadrature. There is reason to believe in the results since they can reproduce the

theoretical results obtained by Cram (1976) and Ichimoto et al. (1996). This numerical

procedure was also sufficient to determine the polarization components to confirm that

the degree of polarization is almost wavelength independent and that it increases with

heights above the solar limb. The degree of polarization (p) is defined by equation (5.15).

Figure (5.16) shows a plot of the degree of polarization, for a given isothermal coronal

temperature of 1.0 MK, for lines of sight at 1.1, 1.3 and 1.5 solar radii. It is evident from

figure (5.16) that the polarization components were calculated with sufficient accuracy to

confirm the behavior expected of the polarization. That is, they are wavelength

independent and increase with heights above the solar limb.
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The numerical code to solve equation (5.1) was written in IDL (Interactive Data

Language) and took ~100 minutes to calculate the intensity spectrum from 3700 – 4700

angstroms in a Pentium-II 233 MHz PC. Of the four integrals two were solved using the

Trapezoidal Composite Rule while the other two were solved using Gaussian Quadrature.

In the situation where the Trapezoidal Composite Rule was used, the quadrature points

were divided into higher and higher number of points to check for differences in the

results.  The final number of quadrature points was selected based on the point where the

overall results for the intensity converges to within five decimal places. As for the other

Figure (5.16).  Plot of the polarization from theoretical
modeling for the formation of the K-corona, at a given
isothermal coronal temperature of 1.0 MK, for lines of
sight at 1.1, 1.3 and 1.5 solar radii. The behavior of the
polarization conforms to the observations. That is, the
polarization is almost wavelength independent and
increases with coronal heights.
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two integrals, these were solved using Gaussian quadratures. Their integration limits

allowed for the use of Hermite polynomials and its associated weights. That is, these

integrals had the form given by equation (5.16).

However the line of sight integration was of the form given by equation (5.17), which

was converted to the form given by equation (5.16), which follows the procedure given in

the Handbook of Mathematical Functions (Ed. M. Abromowitz and L.A. Stegun, pg.

924).

In equation (5.17) the function f(x) is of the following form given by equation (5.18),

which is a convergent function without any singularities in the region of interest.
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For example assume µµµµ =1.0 and ρρρρ=1.1 in equation (5.18). Then the equation

(5.18) reduces to equation (5.19).

Solving equation (5.19) by using the trapezoidal composite rule, where the integration

limit is restricted to 5000x ±±±±====  and dividing this region into 100000 intervals of width

0.1, the result yields a value of 1.1954237.  The restriction in the x-range is perfectly

valid because the integrand rapidly falls to zero about x=0.  Performing this operation

over a range of values for µµµµ  is very time consuming. However by using the Gaussian

quadrature over a Hermite polynomial roots of just twenty points, as specified in equation

(5.17), the result yields a value of 1.1900812.  This value is accurate to within 1.0 % of

the result yielded by the trapezoidal composite rule and is also computed very much

faster. This is also acceptable in light of the limits imposed by the instrument. An

analytical solution also exists for equation (5.19) as shown in equation (5.20) (Standard

Mathematical Tables and Formulae).
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Writing equation (5.19), as shown in equation (5.21), and using equation (5.20) yields a

value of 1.1954237, which matches with the value obtained by using the trapezoidal

composite rule.

The detailed derivation of the theory and the code written in IDL is provided in

Appendix – A and B, respectively. Throughout the code the accuracy of the calculations

were checked using the built in CHECK_MATH function, which returns the accumulated

math error status, and manually. There were no errors reported.
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